Analytics

Data Analytics คือ การวิเคราะห์ข้อมูลที่มีอยู่ตั้งแต่ อดีต จนถึงปัจจุบัน เพื่อทำนายอนาคต ที่เป็นประโยชน์ในการพัฒนาการตลาด ให้ตรงใจลูกค้ามากยิ่งขึ้น Data Analytics เป็นเครื่องมือสำหรับธุรกิจ (Business Intelligence) เพราะว่าการที่บริษัทคุณไม่รู้ข้อมูล ก็เหมือนบริษัทคุณกำลังหาทาง โดยไม่มีจุดหมายปลายทาง ดังนั้นการทำ Data Analytics นี้ไม่จำเป็นต้องเป็นธุรกิจขนาดใหญ่เท่านั้น แต่ธุรกิจขนาดกลางและเล็กก็สามารถทำได้เช่นกัน สำหรับรูปแบบของการวิเคราะห์ข้อมูล (Data Analytics) สามารถแบ่งได้ดังนี้

  • การวิเคราะห์ข้อมูลแบบพื้นฐาน (Descriptive analytics) เป็นการวิเคราะห์ เพื่อแสดงผลของรายการทางธุรกิจ เหตุการณ์ หรือกิจกรรมต่างๆ ที่ได้เกิดขึ้น หรืออาจกำลัง เกิดขึ้นในลักษณะที่ง่ายต่อการเข้าใจ หรือต่อการตัดสินใจ ตัวอย่างเช่น รายงานการขาย รายงานผล การดำเนินงาน
  • การวิเคราะห์แบบเชิงวินิจฉัย (Diagnostic analytics) เป็นการอธิบายถึงสาเหตุของสิ่งที่เกิดขึ้น ปัจจัยต่างๆ และความสัมพันธ์ของปัจจัยหรือตัวแปรต่างๆ ที่มีความสัมพันธ์ต่อกันของสิ่งที่เกิดขึ้น ตัวอย่างเช่น ความสัมพันธ์ระหว่างยอดขายต่อกิจกรรมทางการตลาดแต่ละประเภท ซึ่งเป็นก้าวใหม่ที่ช่วยเสริมให้ตัดสินใจไปในทางที่ถูกต้อง
  • การวิเคราะห์แบบพยากรณ์ (Predictive analytics) เป็นการวิเคราะห์เพื่อพยากรณ์สิ่งที่กำลังจะเกิดขึ้นหรือน่าจะเกิดขึ้น โดยใช้ข้อมูลที่ได้เกิดขึ้นแล้วกับแบบจำลองทางสถิติ หรือ เทคโนโลยีปัญญาประดิษฐ์ต่างๆ (Artificial intelligence) ตัวอย่างเช่น การพยากรณ์ยอดขาย การพยากรณ์ผลประชามติ
  • การวิเคราะห์แบบให้คำแนะนำ (Prescriptive analytics) เป็นการวิเคราะห์ข้อมูลที่มีความซับซ้อนที่สุด เป็นทั้งการพยากรณ์สิ่งต่างๆ ที่จะเกิดขึ้น ข้อดี ข้อเสีย สาเหตุ และระยะเวลาของสิ่งที่จะเกิดขึ้น ร่วมถึงการให้คำแนะนำทางเลือกต่างๆ ที่มีอยู่ และผลของแต่ละทางเลือก

สิ่งที่จะได้จากการวิเคราะห์ เมื่อมีการเก็บข้อมูลสม่ำเสมอ

  • วิเคราะห์ข้อมูลปัจจุบัน เพื่อรู้สถานการณ์ปัจจุบัน เช่น อ่านข้อมูลเพื่อรู้จักลูกค้า
  • วิเคราะห์ข้อมูลอดีตถึงปัจจุบัน เพื่อทำนายอนาคต เช่น นำข้อมูลออกแบบ และพัฒนาสินค้าที่ลูกค้าน่าจะต้องการ
  • วิเคราะห์ข้อมูลตั้งแต่อดีต ปัจจุบัน เพื่อทำนายอนาคต และสามารถวางกลยุทธ์ให้ประสบความสำเร็จ เช่น ออกแบบวิธีการนำเสนอสินค้า ถูกใจ ถูกคน ถูกที่ ถูกเวลา
  • วิเคราะห์ข้อมูลแบบให้คำแนะนำ เพื่อให้คำแนะนำทางเลือกต่างๆ ที่มีอยู่ และผลของแต่ละทางเลือก

การวิเคราะห์ข้อมูลจะทำให้เกิดการเชื่อมโยงกันเป็นระบบในองค์กร

เริ่มต้นอย่างไรดี
การทำ Data Analytics นั้นจะมีส่วนสำคัญอย่างมากในอนาคต เพราะข้อมูลคือสินทรัพย์ที่สำคัญ ดังนั้นการที่จะเริ่มต้นนั้น ต้องลองหัดวิเคราะห์และหาความเชื่อมโยงของข้อมูลกัน อย่าเพียงดูแต่รายงานสรุป แต่ต้องเข้าไปดูข้อมูลดิบอื่น ๆ เพื่อประกอบว่ามีข้อมูลที่สำคัญส่วนใดหายไป หรือการเชื่อมโยงใดที่สำคัญ หรือเกี่ยวข้องกับเหตุการณ์อะไร

ตรงนี้บริษัทอาจจะจัดจ้างนักวิเคราะห์ข้อมูลเข้ามาเพื่อช่วยเหลือในการทำงานและวิเคราะห์ข้อมูลให้ได้ประโยชน์ที่สุด เหมือนพวกบริษัทหลักทรัพย์ที่จะมีนักวิเคราะห์ข้อมูลทางการตลาดเพื่อให้ได้ผลได้เปรียบทางการตลาดเช่นกัน แต่หากไม่สามารถทำได้หรือหาทรัพยากรบุคคลไม่ได้ ก็ลองหาบริษัทเข้ามาทำแทนซึ่งตอนนี้ในประเทศไทยนั้นก็มีบริษัทที่รับวิเคราะห์ข้อมูลเหล่านี้แล้ว

 

เนื้อหาที่เกี่ยวข้อง

icon_siglepoint
Facebook Promoting User Interaction
การส่งเสริมปฏิสัมพันธ์ของผู้ใช้บน Facebook
icon 12 (14)
Banners
แสดง Banner สินค้า, บริการ, เหรือ Promotion พร้อม Multilanguage Feature
Linkedin Networking Strategy
กลยุทธ์การสร้างเครือข่ายบน LinkedIn
TikTok Food Recipes
สูตรอาหารจาก TikTok
icon 6 (24)
Forms
แบบฟอร์มเป็นเครื่องมือที่สำคัญในการช่วยให้ธุรกิจสามารถรวบรวมข้อมูลอย่างมีประสิทธิภาพและเป็นระบบ
Twitter Question to Audience
คำถามจาก Twitter ถึงผู้ฟัง
Linkedin Skill Endorsement Request
การขอการรับรองทักษะบน LinkedIn
Accounting Mergers and Acquistions Financial Due Diligence
การตรวจสอบสถานะทางการเงินสำหรับการควบรวมและซื้อกิจการ
icon 6 (22)
Landing Pages
หน้าเพจที่เป็นเครื่องมือที่สำคัญในการเพิ่มประสิทธิภาพในการเข้าถึงลูกค้าและสร้างความสนใจในผลิตภัณฑ์หรือบริการของธุรกิจ
Twitter Daily Life Observation
การสังเกตชีวิตประจำวันบน Twitter